Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 129: 155645, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38643714

RESUMEN

BACKGROUND: Qing-Yi Recipe, a classic traditional Chinese medicine (TCM), is widely used for treating acute diseases of the abdomen, especially pancreatitis, the efficacy of which has been demonstrated in more than thirty clinical trials. However, the in-vivo pharmacodynamic material basis for this formula remains unclear. METHODS: A sensitive and accurate method for quantifying twenty-two potential bioactive constituents of Qing-Yi Recipe in biological samples was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and this method was fully validated. Then, the integrated pharmacokinetic properties of Qing-Yi Recipe and its major metabolites in rats were investigated using the post-listed granules at both dosages. Subsequently, tissue distributions of those constituents in nine organs (especially the pancreas) were determined, and the overall parameters between the two formulations were compared. RESULTS: Though the chemical profiles of the formulas varied across formulations, the overall exposure level was very similar, and baicalin, wogonoside, geniposide, rhein, costunolide, and paeoniflorin were the top six bioactive compounds in the circulation. All twenty-two natural products reached their first peak within 2 h, and several of them exhibited bimodal or multimodal patterns under the complicated transformation of metabolic enzymes, and the parameters of these products markedly changed compared with those of monomers. Diverse metabolites of emodin and baicalin/baicalein were detected in circulation and tissues, augmenting the in vivo forms of these compounds. Finally, the enrichment of tetrahydropalmatine and corydaline in the pancreas were observed and most compounds remained in the gastrointestinal system, providing a foundation basis for their potential regulatory effects on the gut microbiota as well as the intestinal functions. CONCLUSION: Herein, the pharmacokinetic properties and tissue distribution of multiple potential active constituents in Qing-Yi Recipe were investigated at two dosages, providing a pharmacodynamic material basis of Qing-Yi Recipe for the first time. This investigation is expected to provide a new perspective and reference for future studies on the physiological disposition and potential pharmacodynamic basis of traditional Chinese medicine to treat acute abdomen diseases.

2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1007-1016, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621908

RESUMEN

Chondrocytes are unique resident cells in the articular cartilage, and the pathological changes of them can lead to the occurrence of osteoarthritis(OA). Ligusticum cycloprolactam(LIGc) are derivatives of Z-ligustilide(LIG), a pharmacodynamic marker of Angelica sinensis, which has various biological functions such as anti-inflammation and inhibition of cell apoptosis. However, its protective effect on chondrocytes in the case of OA and the underlying mechanism remain unclear. This study conducted in vitro experiments to explore the molecular mechanism of LIGc in protecting chondrocytes from OA. The inflammation model of rat OA chondrocyte model was established by using interleukin-1ß(IL-1ß) to induce. LIGc alone and combined with glycyrrhizic acid(GA), a blocker of the high mobility group box-1 protein(HMGB1)/Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway, were used to intervene in the model, and the therapeutic effects were systematically evaluated. The viability of chondrocytes treated with different concentrations of LIGc was measured by the cell counting kit-8(CCK-8), and the optimal LIGc concentration was screened out. Annexin V-FITC/PI apoptosis detection kit was employed to examine the apoptosis of chondrocytes in each group. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the expression of cyclooxygenase-2(COX-2), prostaglandin-2(PGE2), and tumor necrosis factor-alpha(TNF-α) in the supernatant of chondrocytes in each group. Western blot was employed to determine the protein levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, HMGB1, TLR4, and NF-κB p65. The mRNA levels of HMGB1, TLR4, NF-κB p65, and myeloid differentiation factor 88(MyD88) in chondrocytes were determined by real-time fluorescent quantitative PCR(RT-qPCR). The safe concentration range of LIGc on chondrocytes was determined by CCK-8, and then the optimal concentration of LIGc for exerting the effect was clarified. Under the intervention of IL-1ß, the rat chondrocyte model of OA was successfully established. The modeled chondrocytes showed increased apoptosis rate, promoted expression of COX-2, PGE2, and TNF-α, up-regulated protein levels of Bax, caspase-3, HMGB1, TLR4, and NF-κB p65 and mRNA levels of HMGB1, TLR4, NF-κB p65, and MyD88, and down-regulated protein level of Bcl-2. However, LIGc reversed the IL-1ß-induced changes of the above factors. Moreover, LIGc combined with GA showed more significant reversal effect than LIGc alone. These fin-dings indicate that LIGc extracted and derived from the traditional Chinese medicine A. sinensis can inhibit the inflammatory response of chondrocytes and reduce the apoptosis of chondrocytes, and this effect may be related to the HMGB1/TLR4/NF-κB signaling pathway. The pharmacological effect of LIGc on protecting chondrocytes has potential value in delaying the progression of OA and improving the clinical symptoms of patients, and deserves further study.


Asunto(s)
Proteína HMGB1 , Ligusticum , Osteoartritis , Humanos , Ratas , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Condrocitos , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacología , Dinoprostona , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Transducción de Señal , Inflamación/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Apoptosis , ARN Mensajero/metabolismo
3.
J Agric Food Chem ; 72(8): 3984-3997, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38357888

RESUMEN

Plant secondary metabolites are critical quality-conferring compositions of plant-derived beverages, medicines, and industrial materials. The accumulations of secondary metabolites are highly variable among seasons; however, the underlying regulatory mechanism remains unclear, especially in epigenetic regulation. Here, we used tea plants to explore an important epigenetic mark DNA methylation (5mC)-mediated regulation of plant secondary metabolism in different seasons. Multiple omics analyses were performed on spring and summer new shoots. The results showed that flavonoids and theanine metabolism dominated in the metabolic response to seasons in the new shoots. In summer new shoots, the genes encoding DNA methyltransferases and demethylases were up-regulated, and the global CG and CHG methylation reduced and CHH methylation increased. 5mC methylation in promoter and gene body regions influenced the seasonal response of gene expression; the amplitude of 5mC methylation was highly correlated with that of gene transcriptions. These differentially methylated genes included those encoding enzymes and transcription factors which play important roles in flavonoid and theanine metabolic pathways. The regulatory role of 5mC methylation was further verified by applying a DNA methylation inhibitor. These findings highlight that dynamic DNA methylation plays an important role in seasonal-dependent secondary metabolism and provide new insights for improving tea quality.


Asunto(s)
Camellia sinensis , Metilación de ADN , Metabolismo Secundario , Estaciones del Año , Epigénesis Genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Té/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Ethnopharmacol ; 323: 117682, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38169205

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Kadsura coccinea (Lem.) A. C. Smith is known as "Heilaohu" of the Tujia ethnomedicine in China. It has anti-tumor, anti-oxidation, anti-HIV, anti-inflammatory and liver protective effects, used to treat diseases such as rheumatoid arthritis, cancer, gastritis and hepatitis. In this research, we investigated the anti-fibrotic effect and possible mechanisms of acetylbinankadsurin A (ACBA) in vitro and in vivo, which is a natural compound derived from roots of K. coccinea. AIM OF THE STUDY: We try to evaluate the efficacy of ACBA in the treatment of liver fibrosis and to explore the underlying mechanisms of ACBA by network pharmacology, machine learning, molecular docking, molecular dynamics simulations, and experimental assessment. MATERIALS AND METHODS: ACBA was isolated from the CH2Cl2 layer of the roots of K. coccinea through column chromatographic techniques. The structure of ACBA was determined by using 1D and 2D NMR. CCl4-induced C57BL/6 mouse liver fibrosis models were established to evaluate the anti-fibrosis effects of ACBA in vivo. The molecular targets of ACBA and liver fibrosis were obtained from various databases, then constructed a protein-protein interaction (PPI) networks through the STRING database. Gene ontology (GO) enrichment and kyoto encyclopedia of genes and genomes (KEGG) analysis were applied using the "clusterProfiler" R package. Furthermore, the key genes for ACBA treatment of liver fibrosis were identified by the least absolute shrinkage and selection operator (LASSO). Molecular docking and molecular dynamics simulations were also carried out. Finally, the target and pathway of ACBA were verified by immunofluorescence staining, RT-PCR and Western blot. RESULT: First, ACBA attenuated CCl4-induced liver injury and fibrosis in vivo. These findings were accompanied by decreased expression of α-SMA and collagen I. Second, ACBA significantly decreased serum levels of ALT, AST, TNF-α and IL-6. Then, we identified 133 potential targets of ACBA and 7987 targets of liver fibrosis. KEGG analysis showed that ACBA could regulate the drug metabolism - cytochrome P450, fructose and mannose metabolism, IL-17 and NF-κB signaling pathways. Next, six core targets was screened by LASSO analysis including AKR1B1, PFKFB3, EPHA3, CDK1, CCR1 and CYP3A4. Molecular docking showed that ACBA has a good binding affinity for CCR1. Furthermore, compared with CCR1 inhibitor BX-471, The results of molecular simulation dynamics showed that ACBA was stable in binding with CCR1. Consistently, ACBA remarkably downregulated the expression of CCR1, p-NF-κBp65, p-IκBα, p-STAT1 and TNF-α proteins, which were upregulated in CCl4-induced hepatic fibrosis and LPS-THP-1 cells. CONCLUSION: Our results suggest that ACBA significantly attenuated CCl4-induced liver fibrosis in histopathological and in serum level. This effect may be mediated by CCR1, NF-κB and STAT1 signalling.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación de Dinámica Molecular , Ratones , Animales , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa , Farmacología en Red , FN-kappa B , Cirrosis Hepática/tratamiento farmacológico , Aprendizaje Automático , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
5.
Phytother Res ; 37(12): 5622-5638, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37690983

RESUMEN

BACKGROUND AND AIM: Hypertension is a major global health problem that causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. The mechanisms of hypertensive TOD are not fully understood, and its treatment is challenging. This review provides an overview of the current knowledge on the role of Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in hypertensive TOD and the natural products and formulations that inhibit it. METHODS: We searched PubMed, Web of Science, Google Scholar, and CNKI for relevant articles using the keywords "hypertension," "target organ damage," "NLRP3 inflammasome," "natural products," and "formulations." We reviewed the effects of the NLRP3 inflammasome on hypertensive TOD in different organs and discussed the natural products and formulations that modulate it. KEY RESULTS: In hypertensive TOD, the NLRP3 inflammasome is activated by various stimuli such as oxidative stress and inflammation. Activation of NLRP3 inflammasome leads to the production of pro-inflammatory cytokines that exacerbate tissue damage and dysfunction. Natural products and formulations, including curcumin, resveratrol, triptolide, and allicin, have shown protective effects against hypertensive TOD by inhibiting the NLRP3 inflammasome. CONCLUSIONS AND IMPLICATIONS: The NLRP3 inflammasome is a promising therapeutic target in hypertensive TOD. Natural products and formulations that inhibit the NLRP3 inflammasome may provide novel drug candidates or therapies for hypertensive TOD. Further studies are needed to elucidate the molecular mechanisms and optimize the dosages of these natural products and formulations and evaluate their clinical efficacy and safety.


Asunto(s)
Productos Biológicos , Hipertensión , Humanos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Hipertensión/tratamiento farmacológico , Inflamación/tratamiento farmacológico
6.
Pharm Biol ; 61(1): 927-937, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37323024

RESUMEN

CONTEXT: Qingyi granules can be used to effectively treat patients with severe acute pancreatitis (SAP). OBJECTIVE: To elucidate the role of gut microbiota-mediated metabolism in the therapeutic effects of Qingyi granules. MATERIALS AND METHODS: Sprague-Dawley rats were grouped into the sham operation, SAP model, Qingyi granule intervention (Q, 1.8 g/kg) and emodin intervention (E, 50 mg/kg) groups and observed for 24 h. H&E staining and ELISA were used for histopathological analysis and serum enzyme and cytokine assays. 16S rDNA sequencing and UHPLC-HRMS were used for gut microbiota analysis and untargeted metabolomics. RESULTS: In SAP rats, Qingyi granules decreased the pancreatic pathological score (Q, 7.4 ± 1.14; SAP, 11.6 ± 1.14, p < 0.01); serum amylase (Q, 121.2 ± 6.7; SAP, 144.3 ± 8.86, p < 0.05), lipase (Q, 566 ± 20.34; SAP, 656.7 ± 29.32, p < 0.01), and diamineoxidase (Q, 492.8 ± 26.08; SAP, 566.1 ± 26.83, p < 0.05) activities; and IL-1ß (Q, 29.48 ± 0.88; SAP, 36.17 ± 1.88, p < 0.01), IL-6 (Q, 112.2 ± 3.57; SAP, 128.9 ± 9.09, p < 0.05) and TNF-α (Q, 215.3 ± 8.67; SAP, 266.4 ± 28.03, p < 0.05) levels. SAP induced Helicobacter and Lactobacillus overgrowth and suppressed Romboutsia and Allobaculum growth and caused aberrations in bacterial metabolites, which were partly reversed by Qingyi granules. DISCUSSION AND CONCLUSIONS: Qingyi granules can modulate the gut microbiota and metabolic abnormalities to ameliorate SAP. Multi-omics approaches allow systematic study of the pharmacological mechanisms of compound prescriptions for critical illnesses.


Asunto(s)
Microbioma Gastrointestinal , Pancreatitis , Ratas , Animales , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Ratas Sprague-Dawley , Enfermedad Aguda
7.
Chemosphere ; 330: 138717, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37076083

RESUMEN

Photocatalytic performance is significantly influenced by the efficiency of photogenerated electron-hole pairs separation and transfer. In this paper, rational designed Z-scheme Bi/Black Phosphorus Nanosheets/P-doped BiOCl (Bi/BPNs/P-BiOCl) nanoflower photocatalyst was synthesized by a facile in-situ reduction process. The interfacial P-P bond between Black phosphorus nanosheets (BPNs) and P-doped BiOCl (P-BiOCl) was investigated by the XPS spectrum. The Bi/BPNs/P-BiOCl photocatalysts exhibited enhanced photocatalytic performance for H2O2 production and RhB degradation. The optimally modified photocatalyst (Bi/BPNs/P-BiOCl-20) showed an excellent photocatalytic H2O2 generation rate of 4.92 mM/h and RhB degradation rate of 0.1169 min-1 under simulated sunlight irradiation, which was 1.79 times and 1.25 times greater than the P-P bond free Bi/BPNs/BiOCl-20. The mechanism was investigated through charge transfer route, radical capture experiments, and band gap structure analysis, indicating that the formation of Z-scheme heterojunctions and interfacial P-P bond not only enhances the redox potential of the photocatalyst but also facilitates the separation and migration of photogenerated electrons-holes. This work might provide a promising strategy for constructing Z-scheme 2D composite photocatalysts combining interfacial heterojunction and elemental doping engineering for efficient photocatalytic H2O2 production and organic dye pollutant degradation.


Asunto(s)
Contaminantes Ambientales , Peróxido de Hidrógeno , Colorantes , Electrones , Fósforo
8.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108101

RESUMEN

Terpenes, especially volatile terpenes, are important components of tea aroma due to their unique scents. They are also widely used in the cosmetic and medical industries. In addition, terpene emission can be induced by herbivory, wounding, light, low temperature, and other stress conditions, leading to plant defense responses and plant-plant interactions. The transcriptional levels of important core genes (including HMGR, DXS, and TPS) involved in terpenoid biosynthesis are up- or downregulated by the MYB, MYC, NAC, ERF, WRKY, and bHLH transcription factors. These regulators can bind to corresponding cis-elements in the promoter regions of the corresponding genes, and some of them interact with other transcription factors to form a complex. Recently, several key terpene synthesis genes and important transcription factors involved in terpene biosynthesis have been isolated and functionally identified from tea plants. In this work, we focus on the research progress on the transcriptional regulation of terpenes in tea plants (Camellia sinensis) and thoroughly detail the biosynthesis of terpene compounds, the terpene biosynthesis-related genes, the transcription factors involved in terpene biosynthesis, and their importance. Furthermore, we review the potential strategies used in studying the specific transcriptional regulation functions of candidate transcription factors that have been discriminated to date.


Asunto(s)
Camellia sinensis , Terpenos , Terpenos/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Té/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Front Pharmacol ; 13: 963638, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147322

RESUMEN

Chinese herbal medicines are effective for treating colon cancer (CC). CC development is reportedly associated with gut microbiota dysbiosis and immune function dysregulation. Herein we explored the therapeutic effects of a Chinese herbal medicine anticancer cocktail soup (CHMACS) on mice with CC and also explored its regulatory effects on gut microbiota. In vivo experiments indicated that CHMACS significantly inhibited the proliferation and tumorigenicity of CC cells. Further, CHMACS treatment decreased the proportion of CD8+ T, natural killer, and Th17 cells. HPLC/MS analysis showed that CHMACS comprised 227 active components. 16S rRNA sequencing revealed, for example, an increase in the relative abundance of uncultured_bacterium_g_Turicibacter and a decrease in that of uncultured_bacterium_g_Coriobacteriaceae_UCG-002 in gut microbiota of CHMACS-treated mice. Microbial diversity cluster analysis revealed that Verrucomicrobia, Spirochaetes, Fusobacteria, Patescibacteria, and Firmicutes contributed the most to fecal microbial diversity. Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis and clusters of orthologous groups of protein annotation indicated that CHMACS treatment induced amino acid metabolism and suppressed carbohydrate metabolism. Moreover, we found a strong association between changes in metabolites and immune cell maturation and activation. To summarize, our findings suggest that CHMACS kills CC cells by regulating gut microbiota and activating immune cells.

10.
Molecules ; 27(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36014464

RESUMEN

Intestinal ischemia/reperfusion (II/R) injury is a common life-threatening complication with high morbidity and mortality. Chebulae Fructus Immaturus, the unripe fruit of Terminalia chebula Retz., also known as "Xiqingguo" or "Tibet Olive" in China, has been widely used in traditional Tibetan medicine throughout history. The phenolic acids' extract of Chebulae Fructus Immaturus (XQG for short) has exhibited strong antioxidative, anti-inflammation, anti-apoptosis, and antibacterial activities. However, whether XQG can effectively ameliorate II/R injuries remains to be clarified. Our results showed that XQG could effectively alleviate II/R-induced intestinal morphological damage and intestinal barrier injury by decreasing the oxidative stress, inflammatory response, and cell death. Transcriptomic analysis further revealed that the main action mechanism of XQG protecting against II/R injury was involved in activating PPARα and inhibiting the NF-κB-signaling pathway. Our study suggests the potential usage of XQG as a new candidate to alleviate II/R injury.


Asunto(s)
Hidroxibenzoatos/farmacología , Daño por Reperfusión , Terminalia , Animales , Ratones , FN-kappa B/metabolismo , PPAR alfa , Extractos Vegetales , Daño por Reperfusión/tratamiento farmacológico , Terminalia/metabolismo
11.
Front Cell Infect Microbiol ; 12: 838340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811665

RESUMEN

Impaired intestinal barrier function and gut microbiota dysbiosis are believed to be related to exacerbation of acute pancreatitis (AP). As a bacterial cell wall peptidoglycan component, diaminopimelic acid (DAP) is a specific ligand of NOD1 that regulates the NOD1/RIP2/NF-kB signaling pathway. Here, we investigated the role of DAP in the crosstalk between the gut microbiota and pancreas during the occurrence of AP. Upregulation of NOD1/RIP2/NF-kB and elevated serum DAP levels were found in severe AP (SAP) model rats. The accumulation of DAP in SAP patients corroborated its ability to serve as an indicator of disease severity. Subsequently, SAP rats were treated with oral administration of the traditional Chinese medicine Qingyi Keli (QYKL) as well as neomycin, which can widely eliminate DAP-containing bacteria. Both QYKL and neomycin intervention ameliorated intestinal and pancreatic damage and systemic inflammation in SAP rats. Through 16S rDNA sequencing, we found that QYKL could rehabilitate the gut microbiota structure and selectively inhibit the overgrowth of enteric bacteria, such as Helicobacter and Lactobacillus, in SAP rats without affecting some protective strains, including Romboutsia and Allobaculum. Interestingly, we demonstrated that the decrease in serum DAP was accompanied by suppression of the NOD1/RIP2/NF-kB signaling pathway in both the intestine and pancreas of the two intervention groups. Taken together, these results suggested that the gut microbiota-DAP-NOD1/RIP2 signaling pathway might play a critical role in the progression of AP and that SAP could be alleviated via intervention in the signaling pathway. Our work provides new potential early warning indicators of SAP and targets for intervention.


Asunto(s)
Microbioma Gastrointestinal , Pancreatitis , Enfermedad Aguda , Animales , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Ácido Diaminopimélico/farmacología , Microbioma Gastrointestinal/fisiología , FN-kappa B/metabolismo , Neomicina , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD1/metabolismo , Ratas , Transducción de Señal
12.
Front Cell Dev Biol ; 9: 632843, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791294

RESUMEN

Alzheimer's disease (AD), one of the most common neurodegenerative diseases, has no effective treatment. We studied the potential effects of tetramethylpyrazine (TMP), an alkaloid in the rhizome of Ligusticum chuanxiong Hort. used in Traditional Chinese Medicine (chuanxiong) to treat ischemic stroke, on AD progression in two AD mouse models. Eight-month-old 3xTg-AD mice received TMP treatment (10 mg/kg/d) for 1 month, and 4-month-old APP/PS1-AD mice received TMP treatment (10 mg/kg/d) for 2 months. Behavioral tests, including step-down passive avoidance (SDA), new object recognition (NOR), Morris water maze (MWM), and Contextual fear conditioning test showed that TMP significantly improved the learning and memory of the two AD-transgenic mice. In addition, TMP reduced beta-amyloid (Aß) levels and tau phosphorylation (p-tau). Venny map pointed out that 116 proteins were commonly changed in 3xTg mice vs. wild type (WT) mice and TMP-treated mice vs. -untreated mice. The same 130 proteins were commonly changed in APP/PS1 mice vs. WT mice and TMP-treated mice vs. -untreated mice. The functions of the common proteins modified by TMP in the two models were mainly involved in mitochondrial, synaptic, cytoskeleton, ATP binding, and GTP binding. Mitochondrial omics analysis revealed 21 and 20 differentially expressed mitochondrial proteins modified by TMP in 3xTg-AD mice and APP/PS1 mice, respectively. These differential proteins were located in the mitochondrial inner membrane, mitochondrial outer membrane, mitochondrial gap, and mitochondrial matrix, and the function of some proteins is closely related to oxidative phosphorylation (OXPHOS). Western-blot analysis confirmed that TMP changed the expression of OXPHOS complex proteins (sdhb, ndufa10, uqcrfs1, cox5b, atp5a) in the hippocampus of the two AD mice. Taken together, we demonstrated that TMP treatment changed the hippocampal proteome, reduced AD pathology, and reduced cognitive impairment in the two AD models. The changes might be associated with modification of the mitochondrial protein profile by TMP. The results of the study suggest that TMP can improve the symptoms of AD.

13.
Nutr Neurosci ; 24(9): 720-734, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31603034

RESUMEN

Effective treatment to prevent or arrest the advance of Alzheimer disease (AD) has yet to be discovered. We investigated whether OligonolR, an FDA-approved flavanol-rich extract prepared from lychee fruit and green tea, exerted beneficial effects relevant to AD in a triple transgenic male mouse model of AD (3×Tg-AD). At 9 months of age, untreated 3×Tg-AD mice vs. wild-type (WT) controls displayed cognitive deficits in behavioral assays and, at 12 months, elevated levels of hippocampal amyloid beta-protein (Aß), amyloid precursor protein (APP), tau phosphorylation, and pro-inflammatory cytokines. 3×Tg-AD mice given Oligonol showed fewer cognitive deficits and attenuated pathological indices at 12 months. Oligonol treatment of 3×Tg-AD mice modulated expression of some critical brain proteins that involve multiple pathways relevant to mitochondrial dysfunction, proteasomal failure, endoplasmic reticulum (ER) stress and synaptic impairment. Together, these results demonstrate that continuous Oligonol treatment attenuates AD-like pathology and cognitive impairment of 3×Tg-AD mice and set the stage for clinical trials of this flavanol-rich plant extract in patients with early AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Catequina/análogos & derivados , Disfunción Cognitiva/tratamiento farmacológico , Litchi/química , Fenoles/administración & dosificación , Extractos Vegetales/administración & dosificación , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Catequina/administración & dosificación , Modelos Animales de Enfermedad , Flavonoides/administración & dosificación , Frutas/química , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Fosforilación/efectos de los fármacos , Té/química , Transgenes/genética , Proteínas tau/genética , Proteínas tau/metabolismo
14.
Phytochemistry ; 180: 112515, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32957017

RESUMEN

Conventional wisdom holds that tea (Camellia sinensis) quality can be improved by drought. To clarify the underlying mechanism, a conjoint analysis of transcriptome and metabolome profiling was carried out in tea shoots harvested under different soil water contents (SWCs). Drought had little impact on theanine, catechins and caffeine in field conditions. Besides the flavor contributions of amino acid and their derivatives, organic acids, and nucleotides and their derivatives, the obviously increased isoflavonoids and glycosylflavonoids and the sharply decreased lipids are suggested to play key roles, which is mainly due to substantial increases of type III polyketide synthase B (PKSB), flavonol synthase/flavanone 3-hydroxylase (FLS), and UDP-glycosyltransferases (UGTs), as well as the significant repression of anthocyanidin synthase (ANS) and R2R3MYBs, and downregulated lipid metabolisms. Genes of GDSL esterase/lipase (GDSL), abscisic acid (ABA) and jasmonate (JA) signaling were found to play important roles in both flavonoid accumulation and lipid reduction. These findings increased our understanding of how moderate drought improves taste and aroma of tea by interfering in the metabolism of fresh leaves, which provides new insight into balancing compounds in pre-harvest tea shoots.


Asunto(s)
Camellia sinensis , Sequías , Metaboloma , Hojas de la Planta , Mejoramiento de la Calidad , , Transcriptoma
15.
Protein Pept Lett ; 27(9): 860-869, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32196436

RESUMEN

BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy worldwide with poor prognosis owing to chemotherapy resistance and cancer relapse. Hence, there is an urgent need to develop novel anticancer agents against ovarian cancer. OBJECTIVE: The aim of this research is to investigate the possible anticancer activity of aloperine, an active ingredient from a traditional Chinese medicine Sophora alopecuroides, and to explore the possible Reactive Oxygen Species (ROS)-related mechanism. METHODS: Cell viability, cytotoxicity, apoptosis, ROS generation, and oxidant stress indicators were analyzed. RESULTS: Our results demonstrated that aloperine significantly induced inhibition of cell viability, promoted cytotoxicity and mitochondrial-related apoptosis, and increased ROS generation in ovarian cancer cells. Furthermore, the antioxidant α-lipoic acid reversed apoptosis in aloperinetreated cells. In addition, we identified hydrogen peroxide as the main type of ROS, and the antioxidant catalase suppressed the apoptotic inducing effect of aloperine whereas hydrogen peroxide supplement exacerbated the effect of aloperine in ovarian cancer cells. CONCLUSION: Taken together, our results indicated that aloperine could exert anti-ovarian cancer cell activity through a reactive oxygen species activation mechanism and suggested aloperine as a potential agent against ovarian cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Ováricas/metabolismo , Piperidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Quinolizidinas
16.
Int J Hyperthermia ; 36(1): 868-875, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452420

RESUMEN

Objective: To compare the efficacy and safety of a novel thermochemotherapy scheme and the instillation of pirarubicin (THP) without hyperthermia in patients with intermediate- and high-risk nonmuscle-invasive bladder cancer (NMIBC). Materials and methods: Between June 2012 and December 2016, 300 patients with urothelial carcinoma of the bladder undergoing intravesical adjuvant therapy with THP after transurethral resection of bladder tumors (TURBT) were enrolled in the study. These patients were divided into the CTHC group (thermochemotherapy composed of three consecutive sessions in which only the second hyperthermia was combined with THP, followed by intravesical instillation with THP without using hyperthermia) and the THP group (instillation of THP without hyperthermia). Cystoscopy and urinary cytology were repeated every 3 months. The primary endpoint was 24-month recurrence-free survival (RFS). Secondary endpoints included 24-month progression-free survival (PFS) and adverse event (AE) rates. Results: Baseline characteristics of the CTHC (n = 76) and THP (n = 85) groups were well-balanced. The 24-month RFS was 82.9% in the CTHC group and 63.5% in the THP group (log-rank p = .008). A significantly higher percentage of patients in the CTHC group achieved PFS than in the THP group (97.4% versus 87.1%; log-rank p = .011). There was no significant difference in AEs between the two groups (p > .05). Based on Cox proportional hazards models, CTHC was the only factor that contributed independently to improved RFS (hazard ratio, 0.422; 95% confidence interval, 0.214-0.835; p = .013). Conclusion: The CTHC scheme is a safe and effective adjuvant treatment option after TURBT for patients with intermediate- and high-risk NMIBC.


Asunto(s)
Antineoplásicos/uso terapéutico , Doxorrubicina/análogos & derivados , Hipertermia Inducida , Neoplasias de la Vejiga Urinaria/terapia , Administración Intravesical , Adulto , Anciano , Anciano de 80 o más Años , Terapia Combinada , Doxorrubicina/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Procedimientos Quirúrgicos Urológicos
17.
Clin Rehabil ; 33(5): 913-922, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30722696

RESUMEN

OBJECTIVE: To determine the prophylactic efficacy of short-term intensive preoperative inspiratory muscle training on the incidence of postoperative pulmonary complications in patients scheduled for cardiac surgery. DESIGN: Single-blind, randomized controlled pilot study. SETTING: TEDA International Cardiovascular Hospital, China. SUBJECTS: In total, 197 subjects aged ⩾50 years scheduled for cardiac surgery were selected. INTERVENTION: The intervention group ( n = 98) received five days of preoperative inspiratory muscle training on top of the usual care received by the patients in the control group ( n = 99). MAIN MEASURES: The primary outcome variable was the occurrence of postoperative pulmonary complications. The secondary outcome variables were inspiratory muscle strength, lung function and length of hospitalization. RESULTS: After cardiac surgery, a total of 10 (10.2%) of the 98 patients in the intervention group and 27 (27.3%) of 99 patients in the control group had postoperative pulmonary complications (risk ratio, 0.23; 95% confidence interval (CI), 0.09-0.58, P = 0.002). The study revealed that, compared with the control group, the intervention group had a significant increase in inspiratory muscle strength (by 10.48 cm H2O, P < 0.001), forced expiratory volume in the first second of expiration (FEV1) %predicted (by 3.75%, P = 0.030), forced vital capacity (FVC) %predicted (by 4.15%, P = 0.008) and maximal voluntary ventilation (MVV) %predicted (by 6.44%, P = 0.034). Length of hospital stay was 7.51 (2.83) days in the intervention group and 9.38 (3.10) days in the control group ( P = 0.039). CONCLUSION: A five-day intensive pattern of preoperative inspiratory muscle training reduced the incidence of postoperative pulmonary complications and duration of postoperative hospitalization in patients undergoing cardiac surgery.


Asunto(s)
Ejercicios Respiratorios , Procedimientos Quirúrgicos Cardíacos , Complicaciones Posoperatorias/prevención & control , Cuidados Preoperatorios , Femenino , Humanos , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Fuerza Muscular/fisiología , Proyectos Piloto , Ventilación Pulmonar/fisiología , Método Simple Ciego , Capacidad Pulmonar Total/fisiología
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 206: 165-169, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30099314

RESUMEN

Discrimination of transgenic edible oil has become the focus of attention in the field of food safety. In this paper, we propose a method for discrimination of transgenic edible oils by using terahertz spectroscopy combine with weighted linear discriminant analysis (WLDA). To evaluate the lustiness of the model, we employ successive projection arithmetic (SPA) and partial least squares (PLS) to verify the discrimination performance through variable selection. The results demonstrate that the SPA-WLDA model has higher classification accuracy than PLS-WLDA. In conclusion, terahertz spectroscopy is coupled with chemometrics is an effective method for discriminating various types of transgenic edible oils.


Asunto(s)
Camellia/química , Aceites de Plantas/análisis , Plantas Modificadas Genéticamente/química , Espectroscopía de Terahertz/métodos , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Aceites de Plantas/química
19.
Oncol Rep ; 41(1): 270-278, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30542707

RESUMEN

Acute pancreatitis (AP) is an aseptic inflammation characterized with an annual incidence rate, and ~20% patients progressing to severe AP (SAP) with a high mortality rate. Although Qingyi decoction has been frequently used for SAP treatment over the past 3 decades in clinic, the actual mechanism of its protective effects remains unknown. As the major active ingredient of Qingyi decoction, emodin was selected in the present study to investigate the effect of emodin against severe acute pancreatitis (SAP) in rats through NOD­like receptor protein 3 (NLRP3) inflammasomes. The rats were randomly divided into a sham operation group, an SAP model group induced by a standard retrograde infusion of 5.0% sodium taurocholate into the biliopancreatic duct, and low­dose (30 mg/kg) and high­dose (60 mg/kg) emodin­treated groups. At 12 h after the event, the plasma amylase, lipase, interleukin (IL)­1ß, IL­18 and myeloperoxidase (MPO) activities were examined. Furthermore, the pathological scores of pancreases were evaluated by hematoxylin and eosin staining. The expression levels of P2X ligand­gated ion channel 7 (P2X7), NLRP3, apoptosis­associated speck­like protein containing a C­terminal caspase recruitment domain and caspase­1 were also analyzed by western blot analysis. The data demonstrated that, compared with the SAP group, emodin could significantly relieve the pancreatic histopathology and acinar cellular structure injury, and notably downregulate the plasma amylase and lipase levels, as well as the MPO activities in pancreatic tissues, in a dose­dependent manner. Furthermore, emodin inhibited the P2X7/NLRP3 signaling pathway followed by the decrease of pro­inflammatory factors, and the latter is beneficial for the recovery of SAP. Collectively, the data indicated that emodin may be an efficient candidate natural product for SAP treatment.


Asunto(s)
Emodina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pancreatitis/tratamiento farmacológico , Sustancias Protectoras/farmacología , Receptores Purinérgicos P2X7/metabolismo , Animales , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Emodina/uso terapéutico , Humanos , Masculino , Pancreatitis/inducido químicamente , Pancreatitis/diagnóstico , Pancreatitis/patología , Peroxidasa/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Sprague-Dawley , Rheum/química , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos , Ácido Taurocólico/toxicidad , Resultado del Tratamiento
20.
RSC Adv ; 9(33): 18776-18784, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35516848

RESUMEN

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by pathological processes, including abnormal amyloid deposits and filament tangles, oxidative stress, neuroinflammation, and neurotrophic insufficiency, leading to chronic and prolonged neuronal loss and cognitive deficits. Tetramethylpyrazine (TMP) is one of the main active components of Ligusticum wallichii, a traditional Chinese medicine widely used for brain related disease. Here, we synthesized the TMP derivative tetramethylpyrazine dimer (DTMP), and evaluated the potential mechanisms underlying its potential neuroprotective effects using the murine neuron-like cells (N2a) transfected with the human "Swedish" mutant amyloid precursor protein (N2aAPP). ELISA results indicated that DTMP reduced the levels of Aß1-40 and Aß1-42 in N2aAPP. Then through proteomic analysis we identified a total of 208 differentially expressed proteins in N2aAPP cells compared to the wild-type N2a cells (N2aWT), including 144 increased and 64 decreased proteins. 449 differentially expressed proteins were revealed in N2aAPP cells on DTMP treatment with 69 increased and 380 decreased proteins. Bioinformatic analysis suggested that these proteins are enriched in mitochondrial function, the electronic transmission chain, ATP binding, oxidative phosphorylation, GTPase function, the transcriptional translation process, amino acid metabolism, nucleotide binding and others. Given the vital role of mitochondria in the pathogenesis of AD, we selected the electron transport chain pathway-related molecules to further validate these findings. Western-blot analysis demonstrated that DTMP significantly increased the levels of complex I (NDUAA), complex II (SDHB), complex III (UCRI), complex IV (COX5A) and complex V (ATP5A) in N2aAPP cells. The modulation of dysregulated proteins implicated in AD pathogenesis implies the pharmacological mechanisms of DTMP and its potential as a novel therapeutic choice in AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA